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1. Introduction 

With advances in display and sensor technologies and with increased emphasis on a smaller, 
more mobile fighting force, today’s Soldier must deal with a density and complexity of 
information that was unknown in the past. Although the intent of providing Soldiers with more 
information is to improve their situational awareness and operational performance in tactical 
situations, the increased informational content places high demands on limited-capacity 
cognitive and neural systems. Various automated filtering algorithms and adaptive displays have 
been developed to help reduce the amount of information presented to the Soldier, but these 
algorithms are rigid and do not adjust based on the user’s cognitive capacity, strategies, and level 
of stress. As a result of this rigidity, their inefficacy can result in suboptimal use of information. 
Ultimately, even with high-performance automated filtering systems, the burden is on the Soldier 
to act on the information in dynamic, complex environments. Therefore, it is critical to develop 
technologies that will allow the integrated human-machine system to be highly adaptive to any 
context.  

This report documents the results of the second year of a 3-year project to develop an approach 
for integrating measures of neural activity into complex multiplatform human-machine systems 
that will provide real-time classification of cognitive and perceptual states and will provide 
dynamic, adaptive adjustment of information displays to accommodate fluctuations in these 
states. The project builds upon key basic research conducted at the Institute for Collaborative 
Biotechnology, applying measures of brain activity to classify performance failures during 
difficult attentional tasks. The overall goal of the project is to establish fundamental parameters 
for optimizing attentional state classification in dynamic tasks from measures of brain activity. 
These measures will be integrated with other measures of behavioral performance and 
physiology and instantiated in hardware and software to monitor and optimize Soldier 
performance.  

In year 1, the team developed benchmarks and studied key display parameters for operator 
performance within demanding tasks. The year 2 work was focused on translating what was 
learned during year 1 (see Gibson et al. 2012) into more-realistic multitasking environments. 
Behind the work are basic questions about the utility of rapid serial visual presentation (RSVP) 
and neural signal processing compared with more conventional interface paradigms. What are 
the types of systems and tasks for which brain-computer interfaces (BCIs) provide the biggest 
improvement in performance? Can we demonstrate clear advantages with BCIs? 
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2. Simulator Development and Experiments 

In addition to communications tasks and to tracking the vehicle position on a mission map, the 
manned ground vehicle (MGV) commander maintains situational awareness of the environment 
outside the vehicle. This is done by viewing a 180° field of view (FOV) and by scanning the 
vehicle surroundings with a 3-axis pan-tilt-zoom camera (PTZ). We will refer to this scanning 
task as “portal search”. The commander may also be cued to critical events through an auditory 
processing system that can detect the approximate location of the gunshots and explosions. In 
this case, the viewing portal will be automatically moved to the approximate location of the 
sound source (“slewed to cue”) to augment target visual search. Figure 1 shows a display from 
the US Army Tank Automotive Research, Development and Engineering Center (TARDEC) 
simulator with the controllable portal in the lower left quadrant. We identified the portal search 
task as one that could potentially be replaced by intelligent RSVP where a computer algorithm 
searches imagery from the immediate vehicle surroundings for salient objects or regions of 
interest (ROI) and presents only those images to the human operator. The neural response of the 
commander elicited by these stimuli is processed by machine learning algorithms to identify 
likely targets among the many distracters. In other words, instead of the commander manually 
searching with a joystick, he simply views images of the surroundings that have been identified 
as possibly containing targets or threats.  

 

Fig. 1   Display from the TARDEC simulator of a crew station commander’s view. The bottom left quadrant is 
currently a controllable portal that could be replaced by intelligent RSVP. 
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A key question about this use of neural processing is whether or not it would improve overall 
performance. Clearly, the answer to the question depends on how efficient and accurate the 
manual search is, how well the image filtering algorithm works, and how quick and accurate the 
RSVP process is. Specifically we identified the parameters in Tables 1 and 2 to quantify portal 
search and RSVP performance for the purpose of making comparisons.  

Table 1   Manipulated parameters 

Variable Conditions Purpose 

Portal speed 
1. Slow 
2. Medium 
3. Fast 

Portal speed should directly affect search time. However, 
this parameter may be fixed or constrained by the hardware 
(e.g., PTZ sensor). 

Portal accuracy 1. Near target 
2. Far from target 

The slew-to-cue accuracy affects the initial placement of the 
camera/portal relative to the target and should have a large 
impact on search speed. 

Portal context 1. No 
2. Yes 

Portal or scene context will directly influence the search 
strategy and thus search time. 

RSVP false alarm rate 1. Low (10:1) 
2. High (100:1) 

The false alarm rate will increase total RSVP processing 
time and may impact behavioral accuracy. 

Target salience 1. Lowa  
2. Higha  

Salience will determine visibility constraints on observer and 
classifier performance. 

aQuantified by established model of visual saliency (Itti and Koch 2000) 
 

Table 2   Fixed parameters 

Variable Value Purpose 

RSVP presentation rate 2 Hz RSVP presentation rate will be fixed to the standard rate 
(2 Hz) employed by the neural processing system. 

RSVP and portal size 300 × 300 pixels Since the purpose of these experiments is to compare RSVP 
and portal search, the absolute size is irrelevant. 

 
With these parameters we defined a series of experiments to examine the tasks and conditions 
under which RSVP is beneficial. The goal was to determine the parameter space for which RSVP 
improves detection performance (speed and accuracy) relative to the portal search (i.e., direct 
control of the PTZ). The initial experiments collected only behavioral data since the performance 
of the classifiers used to discriminate neural signals, under single-task RSVP conditions, is well 
known (Touryan et al. 2010). Later, using a more complex multitasking simulator with integrated 
real-time electroencephalogram (EEG) processing, RSVP performance was measured. Figure 2a 
shows the display for the portal search component of the first experiments. Here, stimuli were 
generated from the video game “Call of Duty: Black Ops” (Activision, Santa Monica, CA, 
2011). Targets are dismounts with guns and are either present or not in the images.  
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Fig. 2   Portal search and salience: a) portal search task display; top window is the context display and the 
bottom window is the controllable portal (centered on target) and b) example stimuli with salient 
features outlined (top image) and colorized (bottom image). The target (contained within the red box) 
does not register as a salient feature. 

To compare manual versus RSVP performance, it is important to understand how an automated 
filtering algorithm would integrate with and affect RSVP. For example, the number of false 
alarms generated by the filtering algorithm directly impacts the length of the RSVP sequence, 
i.e., the number of images that must be presented to the operator. For the purpose of this 
evaluation, we considered an established technique for identifying salient features within a 
natural scene (Itti and Koch 2000) to use for automated image filtering. Figure 2b illustrates 
salient features and objects identified with this algorithm in a sample scene. While many of the 
portions of this image are salient in terms of contrast, orientation, and color features, they are 
not, unfortunately, the portions that include the target object. This is not unusual. In this context 
targets are typically occluded or camouflaged as would be expected in an operational military 
environment. Thus the saliency approach based on bottom-up features to automated filtering is 
not particularly useful here. Rather, the optimal algorithm would have to incorporate contextual 
information and be general enough to detect many types of targets or objects of interest (e.g., 
people, vehicles, guns, windows) without a large number of false alarms.  

For our comparison studies we decided to emulate an automated filtering algorithm and directly 
control the RSVP false alarm rate by manually identifying objects of interest (including the 
target) in each of the images. We set the ratio of images presented during RSVP that contained a 
target to the images that contained no target and address the question of the efficacy of RSVP 

Context Display

Search Portal

a) b)
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under conditions that range from target-sparse to target-rich environments. By emulating the 
algorithm, we could meet the goal of understanding the conditions under which replacing the 
manual search with prefiltered RSVP leads to improved performance.  

Three different types of studies were conducted in support of the development of the simulator. 
The first study looked at search times and accuracies for a manual portal search compared with 
automated filtering and RSVP. The second study focused on using RSVP for threat detection and 
building neural response models that could be used to automatically (versus manually) indicate 
when the operator detects a threat based on his EEG signals. In the third study, participants 
carried out both portal search and the RSVP search with classification of their neural signals, all 
within the multitasking simulation environment. These studies and the results are described in 
the following subsections.  

2.1 Study 1: Portal Search Experiment 

In testing with outside subjects, initial results indicated that the portal task was a good paradigm 
for quantifying the effects of the relevant parameters on performance. In this task subjects 
alternate between portal search and RSVP. In the portal search blocks they must move the portal 
(PTZ) until they find the target or decide that there is no target present. The initial placement of 
the portal is randomly distributed within a given window around the target. In most cases the 
target cannot be seen in the context display and must be identified within the search portal. The 
context display serves primarily to influence the subject’s search path and provided information 
on likely target locations (doors, windows, cars, etc). Figures 3 and 4 illustrate search paths from 
2 subjects. While the portal was initially placed near the target, the subject chose to move the 
portal along a search path away from the true target, resulting in a relatively long search time. 
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Fig. 3   Example of a search path. The yellow “+” indicates the initial placement of the portal while the 
red “x” indicates the final placement and target detection. Inset shows the final portal image 
containing the target. 

 

 

Fig. 4   Example of a search path. The yellow “+” indicates the initial placement of the portal while the 
red “x” indicates the final placement and target detection. Inset shows the final portal image 
containing the target. 

Search Time: 37.5714 (sec) Search Result: Hit

Search Time: 33.4485 (sec) Search Result: Hit
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Data from 16 subjects in the portal search experiment are shown in Fig. 5. The top panels show 
the search time distributions for target-present (red) and target-absent (blue). Vertical lines 
indicate distribution mean. The lower left quadrant shows the relationship between initial portal 
placement and search time. The lower right quadrant shows the time to target in the RSVP 
condition with a 10-ROI sequence (9 false alarms, 1 target). As expected, the search time for 
target-present images was significantly shorter that for target-absent (p < 0.001, Wilcoxon rank 
sum test). The average search time for target-present images was 18 s while the average search 
time for target-absent images was 60 s. While the accuracy for the portal search component was 
high (mean total accuracy = 0.85), it was substantially lower than for the RSVP component 
(mean total accuracy = 0.99). There was a significant correlation in the accuracy between 
subjects’ manual search and RSVP performance (r = 0.62, p = 0.01). Because of the high 
accuracy in the RSVP component (identified in the preliminary studies), we decided to keep the 
RSVP false alarm rate fixed at 0.1, i.e., 10 nontarget ROIs (image clips) for each target ROI in 
all subsequent experiments. Under these conditions the false alarm rate could be tripled  
(to 0.3) and still outperform the manual search. 

 

Fig. 5   Portal search and RSVP summary statistics (16 subjects)  

One of the most interesting observations from this experiment is that the search time does not 
strongly correlate with the initial portal accuracy (i.e., distance from the portal center to the 
target). The correlation coefficient between search time and accuracy is 0.09 (p = 0.07). Unless 
the portal is placed within 100 pixels of the target, the initial placement of the portal does not 
influence the search time. This observation speaks directly to the importance of the slew-to-cue 

0 50 100 150 200
0

50

C
ou

nt

Search Time

0 50 100 150 200
0

5

10

Time to Target (sec)

C
ou

nt

0 100 200 300 400 500
0

50

100

150

200

Intial Distance to Target (pixels)

Ti
m

e 
to

 T
ar

ge
t (

se
c)

Search  (ACC = 0.85)

0 1 2 3 4 5 6
0

10

20

30

40

50

60

Time to Target (sec)

C
ou

nt

RSVP  (ACC = 0.99)

0 0.5 1

R
T



 8 

accuracy and the training of the operator. If the slew-to-cue accuracy can be well quantified, it 
will be imperative to instruct operators to stay within the area of initial placement and suppress 
their instinct to follow a contextual search path. In a similar fashion, the intelligent RSVP should 
be programmed to give priority to ROIs that fall within the cued area. 

One of the other key parameters in Table 2 is portal speed. To test this directly we manipulated 
portal speed for a subset of subjects (N = 10). These subjects performed the search experiment in 
2 sessions. In each session their portal speed (in PTZ) was set to a value of either baseline 
(1× condition) or twice baseline (2× condition). Half of the subjects had the 1× condition first 
and half had the 2× condition first. Over the population we found that there was no significant 
difference in search time for the 2 conditions (p > 0.05, Wilcoxon rank sum test). However, we 
did find a significant reduction in search time between session 1 and 2, indicating a practice 
effect (p < 0.05, Wilcoxon rank sum test). These results suggest that training rather than gimbal 
speed is more important for system performance. 

Finally, we quantified the relationship between target salience (Itti and Koch 2000) and search 
time. As expected, there was no significant correlation between target salience and search time 
(r = 0.03, p = 0.51). This is primarily due to the fact that the majority of targets were low 
salience. When the targets do not “pop out” of the background, subjects follow a search path 
guided by the large-scale contextual cues (e.g., buildings, cars, doors, windows). As such, the 
automated filtering algorithm should incorporate contextual cues and not just low level feature 
salience (Torralba et al. 2003; Torralba et al. 2006). 

2.2 Study 2: RSVP Experiment 1 

In addition to the portal search study, a subset of subjects (N = 12) also performed a longer 
RSVP experiment. Here the stimulus set was from the same ensemble as the portal search 
experiment and the RSVP presentation rate was fixed at 2 Hz. However, in this experiment 
subjects viewed 10 blocks of RSVP, each 2 min long. EEG recordings were digitally sampled at 
256 Hz from 20 scalp electrodes, located on the standard 10–20 coordinate grid, using an 
Advanced Brain Monitoring (ABM) ×24 system configured with the single-trial event-related 
potential (ERP) sensor strip and operating in wired mode (Advanced Brain Monitoring, 
Carlsbad, CA). While the headset operates in both wireless and wired modes, the wired mode 
provided the best event timing, which is critical in RSVP experiments.  

The 12 subjects indicated when they saw a target during the RSVP sequences by pressing a key. 
Their mean accuracy for detecting targets was 0.86 (minimum = 0.73, maximum = 0.94,  
σ = 0.06). This data is shown in Fig. 6. The EEG data for each subject was used to create a 
model of the subject’s response to a target for the ABM headset. The models were constructed 
using a machine learning algorithm described elsewhere (Touryan et al. 2010). The mean area 
under the receiver operating characteristic (ROC) curve for the 12 models was 0.93  
(minimum = 0.81, maximum = 0.97, σ = 0.04). Figure 7 presents the data for each subject. Blue 
bars represent the area under the ROC curve for the classifier using models built from the RSVP 
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session and applied for each of the 12 subjects. The green bars represent the area under the ROC 
curve for 2 subjects when these models are applied to the data from a second session, at least one 
week later. As one might expect, the accuracy of the classifier models is highly correlated with 
target detection accuracy (r = 0.71, p < 0.01). Figure 8 shows the classifier model that was built 
for subject 104.  

 
Fig. 6   Accuracy in detecting targets as recorded with a key 

press for the 12 subjects in the RSVP study 

 

Fig. 7   Subject-by-subject data
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Fig. 8   Graphical representation of the classifier weights for a single subject 

Previous studies have shown that accurate target detection in RSVP can be maintained at 
significantly higher presentation rates (Sajda et al. 2003, Luo and Sajda 2009, Sajda et al. 2010). 
Since an increase in the presentation rate would substantially reduce the search time, we 
modified the RSVP rate to 5 Hz. To test the performance of the simulator, we again needed to 
build models for each subject using the new 5-Hz presentation rate.  

2.3 Study 3: RSVP Experiment 2 

In this experiment we used the same RSVP paradigm and EEG acquisition system as the 
previous experiment. Subjects viewed a stream of images (this time presented at 5 Hz) that were 
cropped screenshots from the video game “Call of Duty”. A small percentage of these images  
(~5%) contained the target: a Soldier carrying a gun. Subjects were instructed to respond with a 
button press when they saw the target. Since each frame was only displayed for 200 ms, the 
button response typically occurred well after the target image was presented. To compensate for 
this response lag, we used a heuristic method to assign each button press to a particular image. 
Specifically, for each button press we identified the preceding 3 images. If one of those images 
was a target, the response was assigned to that image. If none of those images was a target, the 
incorrect response (false alarm) was assigned to the image corresponding to the average reaction 
time (~500 ms). Using this method we were able to get reasonable estimates of reaction time and 
accuracy. 

To quantify the behavioral performance we used the F-measure, which incorporates both 
detection and false alarm rates (Fawcett 2006). Specifically, the F-measure combines the 
precision (positive predictive palue, PPV) and hit rate (true positive rate, TPR): 

 𝑃𝑃𝑉 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃 

, (1) 

 𝑇𝑃𝑅 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

 , (2)
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and 

 𝐹 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 𝑃𝑃𝑉 ∗ 𝑇𝑃𝑅
𝑃𝑃𝑉 + 𝑇𝑃𝑅

 , (3) 

where TP, FP, and FN are the number of true positives, false positives, and false negatives, 
respectively. Over the population of 13 subjects, the average F-measure was 0.81  
(minimum = 0.692, maximum = 0.909, σ = 0.069). Likewise, to quantify the classifier 
performance, we again used the area under the ROC curve (AUC). For the 13 subjects, the 
average AUC was 0.875 (minimum = 0.701, maximum = 0.975, σ = 0.069). Figure 9 shows the 
relationship between the F-measure and the AUC. As in the 2-Hz condition, there was again a 
significant correlation between the behavioral and classifier performance (r = 0.618, p < 0.05). 

 

Fig. 9   Behavioral and classifier performance in 
the 5-Hz RSVP condition 

In addition to analyzing the performance of the classifier, we examined the relationship between 
the classifier score and stimulus properties. Specifically, does the score indicate the perceptual 
difficulty of the target detection? In the RSVP stimulus ensemble there is a range in target 
visibility. In some target images the Soldier is large (occupying up to one-third of the image) and 
salient. In other target images the Soldier is small and distant or partially occluded (or both). 
Likewise, strong shadows and camouflage prevent some targets from being easily distinguished. 
One way to quantify the visibility would be through a parameterization of the target and 
background pixels (e.g., average salience, faction of image, luminance, and contrast). However, 
an aggregate behavioral response provides a quick proxy for target visibility. Here we calculated 
the average hit rate for each target across all subjects (N = 13) in the 5-Hz RSVP experiment. 
The increased RSVP speed resulted in a more-sensitive measure of target visibility with average 
hit rates ranging from 0 to 1. Figure 10 shows a sample of the target images with the highest and 
lowest number of hits (our proxy for visibility). 
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Fig. 10   Target images (ROIs) sorted by average hit rate: images with the highest number of 
hits (left) and images with the lowest number of hits (right) 

Since target visibility affects both the hit rate and reaction time, it is reasonable to assume that 
there would also be an effect on classifier score. The binary classifier used in this project 
employs a linear discriminant function to classify the neural response elicited by each image 
(Touryan et al. 2010). Images with corresponding scores above zero are considered targets while 
images with scores below zero are considered nontargets. However, this continuous-valued score 
is also a measure of the strength of the object categorization response (or P300). In addition, this 
single score can be turned into a waveform by convolving the weight matrix, or discriminant 
function, with the elicited response around a finite temporal window. 

 𝑆(𝜏) =  ∑ ∑ 𝑟(𝑡 − 𝜏, 𝑛)𝑤(𝑡, 𝑛)𝑁𝑇 . (4) 

Here r represents the neural response that is a function of both time (t) and EEG channel number 
(n). The continuous score waveform is calculated around a temporal lag (τ) by convolving the 
weight matrix within a lagged response window. Figure 11 shows an example of this score 
waveform for one subject in the 5-Hz RSVP paradigm. In this figure, the score waveform for 
each target is sorted by reaction time (RT) to illustrate the strong relationship between neural and 
behavioral response. On the left is the score waveform for each target image sorted by RT. 
Negative time values indicate short response latency. The plot on the right shows the relationship 
between lag index and RT. Lag index is the temporal lag of the peak in the score waveform. On 
average, the peak of the score waveform is centered at a lag of zero. However, some target 
images clearly result in a short latency or rapid response while others are significantly delayed in 
time. These large temporal dynamics can lead to a misclassification of the elicited response when 
only considering the score at time zero (data not shown). To quantify the amount of temporal 
variability, we identify the lag of the peak in the score waveform and refer to this as the “lag 
index”. 
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Fig. 11   Temporal dynamics of the classifier score  

Over the population, we find a strong relationship between the score, lag index, and target 
visibility. Figure 12 illustrates this relationship by plotting the visibility of each target image as a 
function of the average score and the average lag index over the population (N = 13). The top 
plot shows visibility as a function of average classifier score. On the bottom, visibility is plotted 
as a function of lag index. The inset shows average score waveform sorted by average reaction 
time. As expected, the score monotonically increases with visibility. However, the relationship 
between the lag index and score is more complicated. Here, early and average latency responses 
have about the same visibility ratings while the longer latency responses tend to be associated 
with low-visibility targets. This result demonstrates the critical role of temporal dynamics in the 
neural response. By incorporating time in the classification of the neural response, not only is 
accuracy improved, but perceptual difficult can be quantified on a single-trial basis.
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Fig. 12   Visibility and classifier score over the population  

2.4 Study 4: Simulator Experiments 

In addition to the RSVP experiments, we also conducted 2 studies using the Scientific 
Applications International Corporation (SAIC) crew station simulator (see Fig. 13). Briefly, the 
task is a simulated patrol of an urban environment. The MGV is driven by the computer, but the 
commander (experimental subject) must perform several tasks as the vehicle navigates through 
the urban environment. The primary task is visual target detection to identify threats. At each 
intersection, the vehicle stops and the subject searches for the target (in this case, a dismount 
carrying a gun). At half of the intersections the search is via the controllable portal while in the 
other half the search is via an RSVP sequence of prefiltered images. The parameters of the RSVP 
search component are very similar to the RSVP experiment previously described. Presentation 
rates of both 2 Hz and 5 Hz were used in the RSVP component. In addition to the intersection 
search, the subject must perform 2 other tasks: 1) identify potential improvised explosive devices 
near the roadside (e.g., trash bags, boxes, tires) while the vehicle is moving and 2) respond to 
specific radio communications.  
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Fig. 13   Display from the SAIC simulator of a crew station commander’s view. At predefined 
locations along the route the simulator initiates a search task either through the 
controllable portal or intelligent RSVP. 

The overall purpose of this simulation is to integrate the real-time classification of neural signals 
into a complex multitasking environment and compare performance in this environment with a 
baseline behavioral condition. Here the neural response to each image chip in the RSVP is 
scored, and the top 3 chips from each intersection search are shown to the subject for 
confirmation. The baseline, or manual search condition, quantifies how long the subject takes to 
find the target with the controllable portal. In this way both the accuracy of the classifier and its 
impact on system performance can be quantified in a more realistic environment. A small 
number of participants were tested using a 2-Hz presentation rate and a larger group of 14 
subjects were tested with a 5-Hz presentation rate, with some subjects run (in different sessions) 
at both 2 Hz and 5 Hz. For each condition, the subjects participated in a separate RSVP session 
prior to the simulator experiment. Individualized classification models were built from EEG data 
collected in these sessions and applied during the simulation runs. Results from these 
experiments indicate that the accuracy of the single-trial classifier is sufficient to find the target 
at each intersection even with the increased presentation rate.  

Analysis of the 5 subjects with the 2-Hz presentation rate show that the difference in mean time 
to find the target (portal search: μ = 0.41, σ = 0.41; RSVP: μ = 0.45, σ = 0.21) is not statistically 
significant [t(4) = –0.61, p = 0.54]. The difference mean accuracy (portal search: μ = 0.80,  
σ = 0.4; RSVP: μ = 0.92, σ = 0.27) is also not statistically significant [t(4) = –1.7, p = 0.086]. 
Figure 14 shows the mean values by subject. 

Sensor banner –
context display 
with large field of 
view

Sensor portal –
controllable portal 
(pan, tilt, zoom)  
for target search

Mission map –
centered on MGV
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Fig. 14   Simulator results for 5 subjects with 2-Hz RSVP presentation rate. Graphs compare time 
(in minutes) to find target and accuracy for RSVP vs. portal search. 

Results for the 14 subjects with the 5-Hz presentation rate are given in Fig. 15. At the faster 
presentation rate the difference in mean time to find the target (portal search: μ = 0.64, σ = 0.49; 
RSVP: μ = 0.23, σ = 0.11) is significant [t(13) = 7.8, p < 0.001] while the difference in mean 
accuracy (portal search: μ = 0.80, σ = 0.4; RSVP: μ = 0.85, σ = 0.35) is not statistically 
significant [(t(13) = –1.13, p = 0.259].  

 

 

Fig. 15   Simulator results for 14 subjects with 5-Hz RSVP presentation rate. Graphs compare time 
(in minutes) to find target and accuracy for RSVP vs. portal search. 
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3. Alternate RSVP Task Experiments 

In parallel with the simulator studies, we conducted 3 experiments that focused on novel 
paradigms for using RSVP in the MGV crew station. These studies attempted to qualify and 
understand the type of performance that could be achieved by using a target detection system 
based on the analysis of brain responses. The goal of the first experiment was to evaluate the 
performance of single-trial detection during a dual-task paradigm. The second experiment was 
aimed at a novel method for improving the accuracy of target detection by measuring 2 
responses to the same target within the constraints of the real-time neural classification. The third 
experiment examined the performance of a collaborative target detection system in which several 
observers are involved in the same target detection task, but each person has a different angle of 
observation of the potential target. Ten healthy subjects have participated in the first 2 main 
experiments (M = 20 years old, standard deviation [SD] = 1). The last experiment was carried 
out with a team of 5 healthy subjects (M = 20 years old, SD = 1.4). 

In each experiment, realistic images were presented to the subjects. The visual stimuli set 
consisted of 683- × 384-pixel color images. These images were taken from “Insurgency: Modern 
Infantry Combat” (New World Interactive, Denver, CO, 2010–2014), a total conversion 
modification of the video game “Half-Life 2” (Valve Corporation, Bellvue, WA, 2004). These 
images were selected because of the high degree of similarity with the environments used in the 
TARDEC and US Army Research Laboratory crew station simulators. Images of the visual 
stimuli are presented in Fig. 16. 

 

Fig. 16   Example of images presented to the user during the 
experiments 
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3.1 Effect of a Dual-Task Condition with Visual Tasks 

The goal of the first experiment was to evaluate the impact of more realistic dual-task conditions 
on neural classification. Previously (see year 1 results) we have shown that there is a decrease in 
both behavioral and classification performance with the dual-task condition. In those 
experiments, the 2 tasks were in different sensory modalities (visual and auditory). In the 
simulator environment, operators have to deal with multiple visual tasks, so here we focused on 
using 2 visual tasks for our study. 

Study 5: Two RSVP Tasks 

In the first experiment we used 2 RSVP tasks each with an image presentation frequency of  
5 Hz and a target probability of 0.1. For each task the goal is to detect the presence of a person in 
a scene. For both tasks we only consider the neural response for the detection of targets. To be 
able to detect targets in both tasks at the same time, the images in both RSVP tasks are not 
presented in phase. This means that the 2 images are never presented at the same time. 
Therefore, it is possible to detect the targets in both tasks independently. 

Two conditions were tested: single task and dual-task. The mean area under the ROC curve 
across subjects for the single task condition is 0.796 ± 0.025 while the mean is only  
0.689 ± 0.020 for the dual-task condition. This decrease in performance is statistically significant 
[t(9) = 6.315, p < 0.001] and highlights the difference between single and dual-task. Despite this 
decrease, the user views twice as many images.  

3.2 An RSVP Task and a Behavioral Task 

In the second experiment, observers were presented with an RSVP task on the left of the screen 
and a map task on the right of the screen. The map task consisted of pressing a key on the 
keyboard when a green dot was presented on the map. A display of the visual stimuli is depicted 
in Fig. 17. Three conditions were tested to evaluate the impact of the dual-task condition: the 
RSVP task only, the behavioral task only, and both tasks simultaneously. For the behavioral task 
only, the hit-rate and the precision were 91.3% and 97.2%, respectively. This level of 
performance is not surprising, as the task was easy. For the RSVP task only, the mean area under 
the ROC curve across subjects was 0.837. When both tasks are performed simultaneously, the 
performance of the behavioral task drops. The hit rate and precision were 86.6% and 92.3%, 
respectively. There was a significant difference between the single and dual-task condition for 
the behavioral task (p < 0.05). However, the mean area under the ROC curve of the RSVP task 
was 0.838. In this case, there was no statistical difference between the single and the dual-task 
condition. 
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Fig. 17   RSVP task (neural detection) (left) and behavioral task (right) 

These results suggest that a decrease in performance can be expected when the user is engaged in 
several tasks. In the first experiment both tasks were identical and posed the same difficulty. In 
the second experiment, tasks were different: The behavioral task was easier.  

3.3 Improvement of the RSVP Paradigm 

For target detection to occur in real time it is impossible to repeat the presentation of images on 
the screen. Therefore single-trial detection should be used for target detection. With only one 
trial it is often difficult to obtain reliable results due to the poor signal-to-noise ratio (SNR) of the 
signal. We propose a new paradigm where the constraint of the images occurring in real time is 
preserved. This paradigm is composed of 2 RSVP streams. These 2 streams of images are 
identical, the only difference being that the second one is delayed in time. If a target appears in 
the first (primary) RSVP stream, this target will be presented later in the second stream. The 
subject pays attention to the primary, real-time RSVP stream and then, if they detected a target, 
switch their attention to the second stream to confirm the presence of a target previously seen in 
the primary stream. After switching for the confirmatory presentation, the subject then switches 
back to the primary RSVP stream. With this strategy 2 ERPs in the EEG signal are produced for 
the same visual stimulus.  

For single-trial detection of both RSVP streams, the mean area under the ROC curve across 
subjects was 0.805. As there may be a difference between the ERP evoked by the 2 RSVP 
streams, the detection was analyzed separately for each RSVP stream. For the primary RSVP 
stream, where the subject sees the target for the first time, the mean area under the ROC curve  
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is 0.818. The mean area under the ROC curve for the second RSVP stream, where the subject 
confirms the presence of a target, is 0.795. This difference in area under the ROC curve between 
the 2 streams is not statistically significant (p = 0.057). However, the combination of these 2 
trials improved the accuracy of the target detection, increasing the mean area under the ROC 
curve to 0.873. The ROC curve of each subject after the combination of 2 trials is presented in 
Fig. 18. With this paradigm, the mean area under the ROC curve is increased by combining 2 
trials while keeping the presentation of the visual stimuli in real time. 

 

Fig. 18   ROC curves for each subject after the 
combination of 2 trials 

3.4 Collaborative BCI for Improving Overall Performance 

Whereas classical neural detection systems are based only on the response of a single individual, 
the combination of the EEG signals from several individuals can improve the overall accuracy 
(Eckstein et al. 2012). Indeed, combining trials improves the SNR of the EEG signal. Averaging 
several trials over time has been done since the early days of BCI with the P300 speller. The 
main challenge is to find applications where multiple trials are natural or inherent in the task. 
Since the combination of trials from several subjects is known to increase the SNR, we would 
like to consider BCI paradigms that require several subjects and where the underlying task is 
identical across subjects. 

We examine a collaborative BCI where different subjects are involved for the detection of the 
same targets at the same time. These subjects observe the same sequence of target and nontarget 
objects and scenes but from different viewpoints. Each subject has a different physical position 
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in the environment so each subject has a different view of the target. Figure 19 shows an 
example of the same target viewed from 5 different positions. The goal of this paradigm is to 
enhance the target detection accuracy by combining the neural responses of subjects who are 
doing the same task. This paradigm is composed of an RSVP task that contains realistic images. 
The images of targets correspond to a view from each of 5 angles around the target, as if 5 
different observers encircle the target. For single-trial detection the average area under the ROC 
curve across subjects is 0.887. The ROC curve of each subject is presented in Fig. 20. With a 
weighted average combination of the different outputs from each subject, the area under the 
ROC curve is 0.991. These promising results show the possibility of reliably detecting targets in 
real time by combining the results for several subjects doing the same global task. The 
performance based on the area under the ROC curve is presented in Fig. 21 as a function of the 
number of subjects involved in the decision.  

 
Fig. 19   Visual stimuli from 5 angles that are observed by 5 different subjects
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Fig. 20   ROC curves for each subject 

 

Fig. 21   Area under the ROC curve as a function 
of the number of observers 

This set of experiments shows the effect of a dual-task condition in a realistic setting. It 
demonstrates 2 paradigms for improving target detection based on the detection of neural signals. 
With the combination of 2 trials, an improvement in the area under the ROC curve from 0.805 to 
0.873 was achieved. With the combination of trials across 5 subjects we were able to achieve an 
area under the ROC curve of 0.991, i.e., an almost perfect performance.  
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4. Multiclass Classification of Neural Signals 

In the studies with RSVP and neural classification described previously and in year 1, each 
image (or video clip) presented either contains a target or it does not. Current systems based on 
the detection of neural signatures look for a single type of response to detect. Hence the 
classification methods that are considered in these systems are binary classifiers (target versus 
nontarget). In operational settings, there can be several classes of images to which an operator 
may respond in different ways. For example, there may be images that contain only the 
background environment. Others may contain noncombatant civilians. Images that contain 
insurgents or threats constitute a third type.  

Study 6: Multiclass Discrimination 

During this year’s work, a study was carried out to look at methods for classifying an operator’s 
neural response to an image or video clip into more than the 2 classic target and nontarget 
categories. This investigation of multiclass classification of single-trial ERPs during a rapid 
serial visual presentation task used short video clips (see Fig. 22). Each trial contained potential 
targets that were human or nonhuman, stationary or moving. The goal of the classification 
analysis was to discriminate between 3 classes: a moving target human (MTH), a moving target 
nonhuman (MTNH), and a nonmoving target human (NMTH). 

 

Fig. 22   RSVP task and examples of targets 

The binary classification of each class with a one-versus-all approach was first evaluated. The 
area under the ROC curve for these binary classifications is presented in Fig. 23. The mean area 
under the ROC curves for the detection of an MTH, MTNH, and NMTH was 0.907, 0.855, and 
0.914, respectively. The detection of an MTH is easier than an MTNH (p < 0.05, t = 2.404). 
Detection of an MTH was better than both an MTNH (p < 0.05, t = 2.589) and an MTH  
(p < 0.05, t14 = 2.589). These results suggest that it is easier to detect stationary human targets.
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Fig. 23   Area under the ROC curve for the binary classification. The error bars correspond to the standard 
error across sessions for each subject and across subjects for the mean.  

For the multiclass classification, we consider the argmaximum of the outputs from the different 
binary classifiers. The performance of the multiclass classification can be represented as an ROC 
surface by weighting the decision of each binary classifier (equivalent to a threshold for a binary 
classifier). The resulting ROC surface represents the performance for all the classes for different 
sets of weights. (Ferri et al. 2003, Landgrebe and Duin 2007) 

The analysis revealed that a mean volume under the ROC surface of 0.878 (see Figs. 24 and 25). 
These results suggest that it is possible to efficiently discriminate between more than 2 types of 
evoked responses using single-trial detection. 

 

Fig. 24   Estimated volume under the surface (EVUS) for each subject. The 
error bars correspond to the standard error across sessions for each 
subject and across subjects for the mean. 
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Fig. 25   Example of an ROC surface 
representing the performance of 
subject 1 (EVUS = 0.9507) 

In Fig. 26 the grand-averaged ERP waveforms for each stimulus class are plotted with a baseline 
correction of –200 to 0.0 ms on the electrodes Fz, Cz, Pz, Oz, P7, and P8. These plots were 
created for each stimulus class and low pass filtered at 30 Hz. Continuous artifact-free data were 
time-locked to stimulus onset and epoched from –200 to 1,000 ms. Only targets followed by a 
response within 200–1,000 ms or nontargets followed by no response were included in the analysis. 

 

Fig. 26   Grand-averaged ERP waveforms for each 
stimulus
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5. Predicting Performance 

A small study was conducted using data from year 1 to look at techniques for predicting 
performance from EEG with RSVP tasks. A number of recently published studies have 
demonstrated that perceptual and attentional performance can be predicted by the amplitude and 
phase of oscillatory substrates in the brain. In particular, prestimulus alpha power and phase have 
been repeatedly shown to be predictive of whether subjects will detect or miss otherwise 
perceptually identical stimuli. Based on this work, we explored the spatial and temporal 
characteristics of this oscillatory activity within our RSVP tasks. Our tasks are particularly well-
suited to investigating this issue because we are able to investigate the relationship between brain 
activity and performance on the single trial level as well as for longer periods of time. 
Specifically the task is divided into 50 blocks of 240 images, and each block of 240 images (each 
2 min long) was divided into miniblocks of 10 images (each 5 s long). In the year 1 studies, we 
used images of faces and cars as stimuli. We focused on trial averaging over both the blocks and 
miniblocks within the RSVP task in which the probability of a face target was 0.5. The mean 
behavioral performance (percent correct, n = 8) across the blocks is shown in Fig. 27. It is clear 
from this figure that there are systematic fluctuations in performance across the blocks and that 
performance is highly variable. 

 

Fig. 27   Behavioral performance  

Study 7: Predicting RSVP Performance 

To investigate the characteristics of the EEG signal that can discriminate between these periods 
of good and bad performance, we performed 2 separate analyses. Based on previous work 
showing that fluctuations in occipital alpha can discriminate between hit and miss trials, we 
divided the miniblocks into those in which all the targets were correctly detected (hit blocks) and 
those in which all the targets were missed (miss blocks). Then we coupled the power spectral 
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density in the alpha frequency band at occipital electrodes (PO3/4, O1/2, Oz) for the 40 s prior to 
those hit and miss blocks. The results of this analysis are shown in Fig. 28. The key finding from 
this analysis was that there was significantly more alpha at occipital electrodes 10 s prior to a 
miss block than a hit block [t(7) = 2.43, p < 0.05].  

 

 

Fig. 28   Mean power spectral density in the alpha 
frequency band  

The second analysis we performed divided all the blocks into those in which performance was 
the best and those in which performance was the worst (relative to the median across blocks). 
The best and worst blocks were then compared in terms of the oscillatory activity induced by the 
RSVP stream itself, otherwise known as the steady state visually evoked potential (SSVEP). To 
compute the SSVEP we band pass filtered the data for each miniblock (best or worst) centered 
on the stimulation frequency of 2 Hz and averaged the resulting wave forms at the same occipital 
electrodes used in the first analysis (see Fig. 29A). Visual inspection of these waveforms clearly 
indicates that the amplitude of the SSVEP was higher during blocks in which performance was 
low. These amplitude differences were quantified by computing the mean peak-to-peak 
amplitude for each type of block. The results of this analysis, shown in Fig. 29B, revealed that 
SSVEP amplitude was significantly higher in best-performing blocks (p < 0.007). Together these 
findings are consistent with recent studies linking increases in occipital alpha to reductions in 
behavioral performance and suggest that these fluctuations play a key role in the spatio-temporal 
dynamics of attention. 
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Fig. 29   Mean SSVEP amplitude at 2 Hz measured at electrodes PO3/4 and O1/2/z: 
A) mean across best and worst performing mini blocks and B) mean peak-
to-peak SSVEP amplitude 

6. Conclusions   

This year the team made significant progress in developing a simulation environment to test the 
performance of state-of-the-art neural classification techniques in an operational context. In the 
previous year we focused on determining the optimal parameters for classification of the neural 
response in an RSVP paradigm. The parameters investigated included target presentation 
properties (e.g., size, eccentricity, and rate), the effects of changes in attentional state on 
classification accuracy, and the effect of operator multitasking on system performance. This 
year, we focused on the specific application of the automated neural processing to a US Army-
relevant system. Our intent was to replace the manual visual search task currently used to both 
identify targets and maintain situational awareness in MGVs. Specifically, the RSVP paradigm 
in combination with automated classification of the neural response would replace the manual 
control of an imaging sensor on the MGV. Therefore, instead of an operator manipulating the 
PTZ camera to scan the environment, images of the vehicle’s surroundings containing potential 
targets would be rapidly presented and subsequently sorted based on the operator’s neural 
response. The operator could then review the most relevant images for target confirmation. 

This second stage of development consisted of 2 elements. First we sought to quantify the 
potential tradeoff of replacing a manual search with RSVP. To accomplish this we conducted an 
experiment to compare the time-to-target and accuracy of these 2 paradigms. Secondly we 
developed a simulation environment based on the MGV crew station. This simulator was 
designed to switch between the 2 search paradigms and was fully integrated with a real-time 
EEG processing system. In addition, the simulator incorporated multitasking aspects of the crew  

A B 
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station including auditory and text communications. Together these results demonstrate the 
feasibility and potential benefits of integrating automated neural processing technology into 
Army systems. 

In the final year of this project we will build on the study results and software that has been 
developed to create a state-of-the-art, standalone, real-time, RSVP-based system for target 
detection. In addition, the simulation environment that was built this year will be further 
developed into a flexible multitasking system called the RSVP-based Adaptive Virtual 
Environment with Neural-processing (RAVEN). Both RAVEN and the stand-alone system will 
support prototyping and evaluation of neural processing in operational Army applications. The 
key results of our studies are summarized in Table 3. 

Table 3   Summary of key year 2 results 

Result Study 
Searching the environment for threats using RSVP gave significantly higher accuracy than a 
manually controlled scan. The mean accuracy for manual portal search was 0.85 while for RSVP 
it was 0.99.  

1 

With a slew-to-cue function the initial accuracy of the portal position does not strongly correlate 
with search time. Untrained operators tend to follow a contextual search.  1 

Portal speed (PTZ speed) did not significantly affect search time.  1 
Participants significantly reduced their search time from the first to the second session. 1 
There was no significant correlation between target salience and search time.  1 
A measure of temporal displacement of the neural response to a target called the lag index was 
defined. Indices that represent longer, delayed responses are associated with low-visibility 
targets. This measure could be useful to improve classification accuracy and to quantify 
perceptual difficulty.  

3 

Using a 2-Hz presentation rate for RSVP, there was no significant difference in either accuracy 
or speed in finding targets. With a 5-Hz presentation rate, the accuracy was not significantly 
different but operators found the target more quickly with RSVP than with portal search. 

4 

Comparing neural classification when a subject simultaneously views 2 RSVP streams at 5 Hz 
with target probability of 0.1 to a single stream, we found that classification accuracy decreased 
from 0.86 to 0.75 AUC.  

5 

 When simultaneously performing RSVP and a behavioral task, accuracy on the behavioral task 
degraded significantly. The classification of the neural response to RSVP under this dual task 
paradigm did not differ significantly from RSVP alone.  

5 

Presenting images side-by-side in 2 identical RSVP streams with one delayed in time increases 
the overall accuracy of the neural classification when the classification of the responses to the 
separate streams are combined.  

5 

Combining the neural responses of 5 subjects viewing the same target from different viewpoints 
results in improved classification accuracy.  5 

By combining the output of binary classifiers, it is possible to discriminate between the neural 
responses to more than 2 types of targets and nontargets.  6 

Examining the power spectra of the EEG signal prior to RSVP single trials, we can predict 
whether or not a subject will detect or miss a target with some degree of accuracy.  7 

Comparing the blocks of RSVP in which the subjects performed best with those in which they 
performed worst, we found that SSVEP amplitude was significantly higher with good 
performance.  

7 
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List of Symbols, Abbreviations, and Acronyms  

ABM Advanced Brain Monitoring 

AUC area under the ROC curve 

BCI brain-computer interface 

EEG electroencephalogram  

ERP event-related potential 

EVUS estimated volume under the surface  

FOV field of view 

Hz hertz 

MGV manned ground vehicle 

MTH moving target human 

MTNH moving target non human 

NMTH nonmoving target human 

PPV positive predicted value 

PTZ pan tilt zoom 

RAVEN RSVP-based Adaptive Virtual Environment with Neural-processing 

ROC receiver operating characteristic 

ROI region of interest 

RSVP rapid serial visual presentation 

RT reaction time 

SAIC Science Applications International Corporation 

SNR signal-to-noise ratio 

SSVEP steady state visual evoked potential 

TARDEC Tank and Automotive Research, Development and Engineering Center 

TPR true positive rate
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